Available online at https://jurnal.pascaumnaw.ac.id/index.php/JMN Jurnal MathEducation Nusantara Vol. 4 (1), 2021, 121-131

Sistem Pendukung Keputusan Pemilihan Media Pembelajaran Daring Menggunakan Metode AHP

Rima Aprilia¹, Riyanda Fani², Ella Nuhrul Huda³, Hema Pebria Rollingka⁴

Universitas Islam Negeri Sumatera Utara, Jl. William Iskandar Ps. V, Medan Estate, Kec. Percut Sei Tuan, Kabupaten Deli Serdang, Sumatera Utara, 20371, Indonesia Email: rima aprilia@uinsu.ac.id, Telp: +6282168818862

Abstrak

Saat ini, dunia sedang digemparkan dengan adanya *Corona Virus Disease* atau yang lebih dikenal dengan istilah Covid-19 sehingga kegiatan pembelajaran *daring* adalah hal yang paling efektif dilakukan oleh pelajar, mahasiswa maupun guru dan dosen. Dalam pemilihan media pembelajaran daring, metode AHP (*Analytical Hierarchy Process*) diharapkan mampu memberikan solusi terbaik untuk memilih media pembelajaran yang paling efektif digunakan selama pembelajaran daring. Tujuannya adalah sebagai dasar teori dalam melakukan studi sekaligus menjadi dasar untuk melakukan sistem pendukung keputusan. Hasil yang diperoleh, *Whatsapp group* dengan nilai 0,1969 sebagai media daring yang efektif digunakan.

Kata Kunci: pemilihan media, pembelajaran daring, metode AHP

Decision Support System for Choosing Online Learning Media Using the AHP Method

Abstract

Currently, the world is in an uproar with the Corona Virus Disease or better known as Covid-19 so that online learning activities are the most effective thing for students, students and teachers and lecturers to do. In selecting online learning media, the AHP (Analytical Hierarchy Process) method is expected to be able to provide the best solution for selecting the most effective learning media used during online learning. Its purpose is to act as a theoretical basis for conducting studies as well as a basis for conducting a decision support system. The results obtained, Whatsapp group with a value of 0.1969 as an online media that is effectively used.

Keywords: media selection, online learning, AHP method

PENDAHULUAN

Saat ini, dunia sedang digemparkan dengan adanya Corona Virus Disease atau yang lebih dikenal dengan istilah Covid-19. Dikutip dari CNN Indonesia, Covid-19 dikonfirmasi pertama kali pada 31 Desember 2019 di Kota Wuhan, Cina hingga akhirnya menyebar ke seluruh dunia. Kemudian, pada 2 Maret 2020 mengkonfirmasi Indonesia kasus pertamanya. Terkait dengan hal tersebut, dikutip dari Liputan6.com, pada 15 Maret 2020 Bapak Ir Jokowidodo selaku Presiden RI menyampaikan kebijakan untuk bekerja dan belajar dari rumah atau WFH (Work Form Home) guna menekan penyebaran Covid-19.

Pada masa pandemic seperti ini, kegiatan pembelajaran daring adalah hal yang paling efektif dilakukan, guna menekan penyebaran tersebut. virus macam media pembelajaran Berbagai daring yang tadinya kurang diminati, saat alternatif terbaik menjadi dalam melaksanakan pembelajaran daring, baik yang disediakan secara gratis maupun berbayar. Tujuan pemilihan media pembelajaran daring guna memudahkan pendidik dan peserta didik dalam mengambil keputusan terkait penggunaan media pembelajaran daring yang efektif.

Metode AHP digunakan untuk menentukan alternatif dari suatu permasalahan berdasarkan kriteria-kriteria tertentu. Metode ini dianggap sangat efektif untuk membandingkan alternatif yang ada. (Analytical Metode AHPHierarchy Process) biasanya menggunakan matriks Pairwise Comparison untuk menentukan alternatif dilakukan yang secara berkelompok. Pairwise Comparison dalam AHP merupakan kegiatan pembobotan kriteria dan alternatif. Hasil pembobotan tersebut kemudian akan dibandingkan antara satu dengan yang lainnya untuk mendapatkan solusi terbaik.

Mengetahui karakteristik media pembelajaran yang sering digunakan sewaktu pembelajaran *daring* dengan menggunakan metode AHP.

Penelitian ini bertujuan untuk memilih media *daring* serta mengetahui faktor-faktor yang mempengaruhi peserta didik maupun pendidik dalam pemilihan media pembelajaran *daring* dengan menggunakan metode AHP.

Media merupakan bentuk jamak dari kata medium. Media berasal dari bahasa Latin yang secara harfiah berarti perantara atau pengantar. Dalam Buku yang berjudul "Perencanaan dan Desain Sistem Pembelajaran" karya Sanjaya (2008) dijelaskan bahwa Lesle J. Briggs berpendapat media merupakan alat untuk memberi perangsang bagi peserta didik supaya terjadi proses belajar.

Selain itu, di dalam Buku yang berjudul "Perencanaan dan Desain Sistem Pembelajaran" karya Sanjaya (2008) dijelaskan juga bahwa Gerlach berpendapat media itu meliputi orang, bahan, peralatan atau kegiatan yang menciptakan kondisi yang memungkinkan siswa memperoleh pengetahuan, keterampilan, dan sikap.

Maka, dalam pengertian ini media bukan hanya alat perantara seperti tv, radio, slide, bahan cetakan, akan tetapi meliputi manusia sebagai sumber belajar atau berupa kegiatan seperti diskusi, seminar, karyawisata, simulasi, dan lain-lain guna menambah pengetahuan dan wawasan, mengubah sikap siswa atau untuk menambah keterampilan.

Menurut Ranius (2015), sistem pengambilan keputusan merupakan cabang ilmu yang letaknya diantara sistem informasi dan sistem cerdas. Proses pengambilan keputusan dari berbagai alternatif yang ada maka dibutuhkan adanya suatu kriteria. Setiap kriteria harus mampu menjawab satu pertanyaan penting mengenai seberapa baik suatu alternatif dapat memecahkan suatu masalah yang

dihadapi. Finlay (dalam Aprilia, 2019) mencoba mendefinisikan sistem pendukung keputusan sebagai suatu sistem informasi berbasis komputer yang fleksibel,adatif,interaktif untuk menyerlesaikan permalahan manajemen yang tidak terstruktur.

Metode AHP merupakan salah satu motode untuk pengambilan keputusan yang dapat membantu kerangka berpikir manusia. Dasar berpikirnya metode AHP adalah proses membentuk skor secara numerik untuk menyusun rangking setiap keputusan alternatif berbasis pada bagaimana sebaiknya alternatif itu dicocokkan dengan kriteria pembuat keputusan (Sonatha, 2010). Metode AHP ini membantu menyelesaikan permasalahan yang banyak alternatif dengan multicriteria menggunakan beberapa langkah, antara lain: (Suryadi, 2017)

- Mendefinisikan masalah dan menentukan solusi yang diinginakan, lalu menyusun hirarki dari permasalahan yang dihadapi.
- 2. Penyusunan Prioritas

Setiap kriteria yang sudah ditentukan maka harus diketahui bobotnya. Hal ini bertujuan untuk mengetahui tingkat kepentingan terhadap kriteria yang ada. Langkah pertama adalah menyusun perbandingan berpasangan dengan cara membandingkan setiap kriteria yang ada. Misalkan terhadap sub sistem hirarki dengan kriteria C dan sejumlah n alternatif dibawahnya, sampai perbandingan antar alternatif untuk sub sistem hirarki itu dapat dibuat dalam bentuk matriks $n \times n$, seperti pada tabel dibawah ini:

Tabel. Matriks Berpasangan

С	A_1	A_2	A ₃	A _n
A_1	A ₁₁	A ₁₂	A ₁₃	A _{1n}
A_2	A ₂₁	A ₂₂	A ₂₃	A _{2n}
A ₃	A ₃₁	A ₃₂	A ₃₃	A _{3n}
A _m	A _{m1}	A _{m2}	A _{m3}	A _{mn}

Nilai A_{11} adalah nilai perbandingan elemen A_1 (baris) terhadap A_1 (kolom) yang menyatakan hubungan:

- a. Seberapa jauh tingkat kepentingan A_1 (baris) terhadap kriteria C dibandingkan dengan A_1 (kolom) atau
- b. Seberapa jauh dominasi A_1 (baris) terhadap A_1 (kolom) atau
- c. Seberapa banyak sifat kriteria C terdapat pada A₁ (baris) dibandingkan dengan A₁ (kolom)

Nilai numerik yang dikenakan untuk seluruh perbandingan diperoleh dari skala

perbandingan 1 sampai dengan 9 yang telah ditetapkan oleh Saaty, seperti pada tabel berikut:

Tabel. Skala Perbandingan Berpasangan

Skala Perban dingan	Keterangan
1	Kedua elemen sama pentingnya
3	Elemen yang satu sedikit lebih penting daripada elemen yang lainnya
5	Elemen yang satu lebih penting dari elemen yang lainnya
7	Satu elemen jelas lebih mutlak penting daripada elemen lainnya
9	Satu elemen mutlak penting daripada elemen lainnya
2,4,6,8	Nilai-nilai antara dua nilai pertimbangan yang berdekatan

3. Eigen Value dan Eigen Vector

Jika A adalah matriks $n \times n$ maka vektor tak nol x di dalam R^n dinamakan $Eigen\ Vector\ dari\ A$ jika Ax keliatan skalar λ , yakni:

$$Ax = \lambda x$$

Skalar λ dinamakan *Eigen Value* dari A dan x dikatakan *EigenVector* yang bersesuaian dengan λ . Untuk mencari *Eigen Value* dari matriks A yang berukuran $n \times n$ maka dapat ditulis pada persamaan berikut:

$$Ax = \lambda x$$

atau secara ekivalen

$$(\lambda I - A)x = 0$$

Agar λ menjadi *Eigen Value*, maka harus ada pemecahan tak nol dari persamaan ini. Akan tetapi, persamaan diatas akan mempunyai pemecahan tak nol jika dan hanya jika:

$$\det(\lambda I - A) x = 0$$

Ini dinamakan persamaan karakteristik *A*, scalar yang memenuhi persamaan ini adalah *Eigen Value* dari *A*.

4. Menghitung *Consistency Index* (CI) dengan rumus:

$$CI = \frac{(\lambda \ maks - n)}{n - 1}$$

Dimana:

CI = Consistency Index (Rasio penyimpangan (deviasi) konsistensi)

 λ maks = Nilai eigen terbesar dari matriks ber-ordo n

n = Ordo Matriks

5. Menghitung Consistency Ratio (CR)

Apabila CI bernilai nol, matriks maka pairwise comparison tersebut konsisten. Batas ketidak-konsistenan (inconsistency) yang telah ditetapkan oleh Thomas L. Saaty ditentukan dengan menggunakan Rasio Konsistensi (CR), yaitu perbandingan indeks konsistensi dengan nilai Indeks Random (RI) yang didapatkan dari suatu eksperimen oleh Oak Ridge National Labority kemudian dikembangkan oleh Wharton School dan diperlihatkan seperti tabel 3. Nilai ini bergantung pada ordo matriks n. Dengan demikian, Rasio Konsistensi dapat dirumuskan sebagai berikut:

$$CR = \frac{CI}{RI}$$

Dimana:

CR = Consistency Ratio

 $CI = Consistency\ Index$

 $RI = Random\ Index\ Consistency$

Tabel. Tabel Indeks Random Konsistensi

	n	1,2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ī	RI	0,00	0,58	0,90	1,12	1,24	1,32	1,41	1,45	1,49	1,51	1,48	1,56	1,57	1,59

6. Memeriksa konsistensi hirarki. Bila matriks *pairwise comparison* dengan nilai CR lebih kecil dari 0,10 maka ketidak-konsistenan pendapat dari *decision maker* masih dapat diterima jika tidak maka penilaian perlu diulang.

METODE

Jenis data yang dikumpulkan dan dijadikan analisis adalah data yang bersumber dari kuisioner yang telah diisi oleh pelajar, mahasiswa, guru maupun dosen.Pengumpulan data dengan melakukan observasi terhadapat media daring yang digunakan yaitu E-learning, Zoom, Google classroom, Google meet, Whattsapp group dan Telegram group

HASIL DAN PEMBAHASAN

Data yang digunakan dalam penelitian ini adalah data yang berasal dari penilaian kuesioner yang diberikan kepada koresponden yaitu tenaga pendidik dan peserta didik. Dalam penilaian tersebut media pembelajaran *daring* yang berperan

sebagai alternatif dinilai berdasarkan kriterianya. Dibawah ini adalah tabel kriteria dan alternatif yang akan diuji dalam metode AHP (*Ananlitycal Hierarchy Process*) sehingga mendapat alternatif yang unggul daripada alternatif lainnya.

Tabel. Alternatif dan Kriteria

A	Alternatif		Kriteria
A1	E-learning	C1	Penggunaannya mudah
A2	Google Classroom	C2	Penggunaan data internet
A3	WhatsApp	C3	Pendukung metode pembelajaran
A4	Zoom	C4	Efesiensi waktu
A5	Telegram	C5	Kapasitas unggah dokumen
A6	Google Meet	C6	Tingkat <i>error</i> media

Adapun penilaian yang diberikan berada pada angka 1 sampai dengan 5. Semakin tinggi nilai maka semakin baik, begitupun sebaliknya. Pada tingkat *error* media, semakin jarang media mengalami ke-*error*-an maka semakin tinggi nilainya.

a. Matriks Berpasangan

Tabel. Matriks Perbandingan Berpasangan

Kriteria	C1	C2	C3	C4	C5	C6
C 1	1	1/5	1/4	1/2	1/3	1/3
C2	5	1	5/4	5/2	5/3	5/3
С3	4	4/5	1	2	4/3	4/3
C4	2	2/5	1/2	1	2/3	2/3
C5	3	3/5	3/4	3/2	1	1
C6	3	3/5	3/4	3/2	1	1

b. Menentukan Nilai Eigen

Tabel. Matriks Kriteria

Kriteria	C1	C2	C3	C4	C5	C6
C1	1	0,200	0,250	0,500	0,333	0,333
C2	5	1	1,250	2,500	1,667	1,667
C3	4	0,800	1	2	1,333	1,333
C4	2	0,400	0,500	1	0,667	0,667
C5	3	0,600	0,750	1,500	1	1
C6	3	0,600	0,750	1,500	1	1

Tabel. Jumlah Matriks Perbandingan Kriteria

Kriteria	C1	C2	C3	C4	C5	C6
C1	1	0,200	0,250	0,500	0,333	0,333
C2	5	1	1,250	2,500	1,667	1,667
С3	4	0,800	1	2	1,333	1,333
C4	2	0,400	0,500	1	0,667	0,667
C5	3	0,600	0,750	1,500	1	1
C6	3	0,600	0,750	1,500	1	1
Jumlah	18	3,600	4,5	9	6	6

Tabal	Motrilea	Llocil.	Pembagian
rabei.	Mauriks	Hasii	Pembagian

Kriteria	C1	C2	C3	C4	C5	C6
C1	0,056	0,056	0,056	0,056	0,056	0,056
C2	0,278	0,278	0,278	0,278	0,278	0,278
C3	0,222	0,222	0,222	0,222	0,222	0,222
C4	0,111	0,111	0,111	0,111	0,111	0,111
C5	0,167	0,167	0,167	0,167	0,167	0,167
C6	0,167	0,167	0,167	0,167	0,167	0,167

Tabel. Jumlah Kolom Matriks Perbandingan

Kriteria	C1	C2	C3	C4	C5	C6	Jumlah
C1	0,056	0,056	0,056	0,056	0,056	0,056	0,336
C2	0,278	0,278	0,278	0,278	0,278	0,278	1,668
C3	0,222	0,222	0,222	0,222	0,222	0,222	1,332
C4	0,111	0,111	0,111	0,111	0,111	0,111	0,666
C5	0,167	0,167	0,167	0,167	0,167	0,167	1,002
C6	0,167	0,167	0,167	0,167	0,167	0,167	1,002

c. Menentukan Nilai Eigen Maksimum

Tabel. Nilai Eigen

Kriteria	Nilai Eigen
C1	0,056
C2	0,278
C3	0,222
C4	0,111
C5	0,167
C6	0,167

$$\lambda$$
maks = (0,056 × 18)
+ (0,278 × 3,600)
+ (0,222 × 4,500)
+ (0,111 × 9)
+(0,167 × 6) + (0,167 ×
6)
= 1,008 + 1,008 +
0,999 + 0,999 +
1,002 + 1,002
= 6,018

d. Menghitung Indeks Konsistensi (CI)

 $CI = (\lambda maks - n)/n - 1$

CI = (6.018 - 6)/6 - 1

CI = 0.0036

e. Menghitung Rasio Konsistensi (CR)

CR = CI/IR

CR = 0.0036/1.24

CR = 0.0029

Dengan nilai CR adalah 0,0029 maka pembobotan pada setiap kriteria dapat dikatakan konsisten karena CR < 0,1.

f. Menentukan Nilai Eigen Setiap Hirarki

Dalam menghitung nilai eigen dari setiap kriteria berdasarkan alternatif yang ada, sama halnya seperti pembobotan kriteria sebelumnya yaitu dengan matriks berpasangan, sehingga didapatkan hasil nilai eigen tersebut sebagai berikut:

Tabel. Nilai Eigen Setiap Hirarki

Alternatif	Kriteria							
Atternatif	C1	C2	C3	C4	C5	C6		
E-learning	0,1523	0,1421	0,1647	0,1587	0,1423	0,1278		
Google Classroom	0,1774	0,1921	0,1780	0,1633	0,1868	0,1848		
WhatsApp	0,1867	0,2118	0,1920	0,1827	0,1795	0,2077		
Zoom	0,1661	0,1347	0,1602	0,1540	0,1527	0,1423		
Telegram	0,1611	0,1672	0,1515	0,1758	0,1770	0,1777		
Google Meet	0,1564	0,1521	0,1537	0,1658	0,1623	0,1602		

g. Menghitung Hasil

Untuk menghitung hasil akhir, nilai eigen pembobotan kriteria dikalikan dengan

matriks nilai eigen setiap hirarki dengan cara perkalian matriks.

Tabel. Perkalian Matriks

Alternatif	C1	C2	С3	C4	C5	C6	Kriteria
E-learning	0,1523	0,1421	0,1647	0,1587	0,1423	0,1278	0,056
Google Classroom	0,1774	0,1921	0,1780	0,1633	0,1868	0,1848	0,278
WhatsApp	0,1867	0,2118	0,1920	0,1827	0,1795	0,2077	0,222
Zoom	0,1661	0,1347	0,1602	0,1540	0,1527	0,1423	0,111

Copyright © 2018, Jurnal MathEducation Nusantara ISSN: 2614-512X (print), Online ISSN: 2614-5138 (online)

Telegram	0,1611	0,1672	0,1515	0,1758	0,1770	0,1777	0,167
Google Meet	0,1564	0,1521	0,1537	0,1658	0,1623	0,1602	0,167

Tabel. Hasil Perkalian Matriks

Alternatif	Hasil
E-learning	0,1473
Google Classroom	0,1830
WhatsApp	0,1969
Zoom	0,1487
Telegram	0,1679
Google Meet	0,1574

Sehingga diperoleh urutan hasil akhir perhitungan media pembelajaran daring dari dengan metode AHP yaitu:

Tabel. Hasil Akhir

No.	Alternatif	Hasil
1	WhatsApp	0,1969
2	Google Classroom	0,1830
3	Telegram	0,1679
4	Google Meet	0,1574
5	Zoom	0,1487
6	E-learning	0,1473

Maka didapat WhatsApp sebagai media pembelajaran daring yang mendekati penilaian kriteria menggunakan metode AHP (*Analytical Hierarchy Process*).

SIMPULAN

Pandemi Covid 19 menyebabkan terjadi pembelajaran dilakukan di rumah oleh siswa maupun mahasiswa, penelitian ini bertujuan memberikan rekomendasi kepada masyarakat berupa media daring yang efektik di masa pandemi dengan kriteria-kriteriayang menerapkan dengan permasalahan yang ada. Sistem pendukung keputusan media daring dalam pembelajaran dengan memnerapkan metode (Analytical Hierarchy Process) AHP menghasilkan media WhatsApp Pada urutan pertama sebagai media daring yang direkomendasikan sebagai mediapembelajaran yang paling efektif digunakan oleh pelajar, mahasiswa maupun guru dan dosenselama pembelajaran daring

DAFTAR PUSTAKA

Aprilia, Rima. 2019. FUZZY MULTIPLE

ATTRIBUTE DECISION MAKING IN

HOTEL SELECTION. ZERO: Jurnal
Sains, Matematika dan Terapan, 2(2).

Aprilia, R., Triase, T., & Sriani, S. 2017.

Penentuan Tempat Menginap Dengan

- Menggunakan Fuzzy Multiple
 Attribute Decision
 Making. ALGORITMA: jurnal ilmu
 komputer dan informatika, 1(01).
- Prayoga, Nanda Dimas. 2018. "Sistem

 Pendukung Keputusan Pemilihan

 Rumah Sakit Terbaik di Asahan

 Menggunakan Metode AHP

 (Analytical Hierarchy Process)".

 STMIK Royal Kisaran.
- Suryadi, A & Harahap, E. 2017. "Pemeringkatan Pegawai Berprestasi menggunakan Metode AHP (Analytic Hierarchy Process)" di PT. XYZ, Jurnal Matematika Vol. 16 No.2

- Sadiman, Arief S. (dkk). 2008. "Media Pendidikan: Pengertian, Pengembangan, dan Pemanfaatannya". Jakarta:.

 RajaGrafindo Persada.
- Sanjaya, Wina. 2008. "Perencanaan dan Desain Sistem Pembelajaran".

 Jakarta: Kencana.
- Triase, T., Aprilia, R., & Khairuna, K. (2019). Implementation of Electre Method in Determining Tourism Places in North Sumatera. ZERO:

 Jurnal Sains, Matematika dan Terapan, 3(2), 94-106.